
Lecture 8 on Oct. 3

We have learned that a linear transformation maps circles to circles. There is one more
question left unsolved. If a linear transformation, denoted by S is given and a circle, de-
noted by C is given, how can we determine the image of this circle C under the action of
the linear transformation S. To determine a circle, we only need to know its center and the
radius. Given a point z0 on C, clearly S(z0) lies on the image of C. Therefore if we know
where the center of the image of C is, then the radius of the imaging circle can be found by
the absolute value of S(z0) − p0. Here p0 is the center of the imaging circle. All the above
arguments reduce the problem to search the center of the imaging circle.

Before proceeding, let us introduce the concept of symmetric point.

Definition 1. Given z2, z3, z4, we can determine a line or a circle, denoted by C, passing
these three points. If z is arbitrarily given, then z∗ is called the symmetric point of z with
respect to the circle C if z∗ satisfies the following equation

(z∗, z2, z3, z4) = (z, z2, z3, z4).

One should notice that the above definition is independent of the choice of z2, z3 and z4.
That is

Remark 1. if (z′2, z
′
3, z
′
4) and (z2, z3, z4) determine an identical circle C, then the two sym-

metric points given by Definition 1 are equal.

Proof. the proof is just a straightforward calculation. here we only assume z′2 6= z2 and let
z′3 = z3, z

′
4 = z4. If (z∗)′ is the symmetric point of z given by the triple (z′2, z3, z4), then by

Definition 1, we have

z′2 − z3
z′2 − z4

/
(z∗)′ − z3
(z∗)′ − z4

=

(
z′2 − z3
z′2 − z4

/
z − z3
z − z4

)
(0.1)

Since z′2 stays on C, then we know that (z′2, z2, z3, z4) = λ is real. Equivalently we have

z′2 − z3
z′2 − z4

= λ
z2 − z3
z2 − z4

.

Applying the above equality to (0.1) and noticing that λ is real, one can easily show that

z2 − z3
z2 − z4

/
(z∗)′ − z3
(z∗)′ − z4

=

(
z2 − z3
z2 − z4

/
z − z3
z − z4

)
(0.2)

Still by Definition 1, (z∗)′ is the symmetric point of z given by the triple (z2, z3, z4). The
proof is done.
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Since cross ratio is invariant under linear transformations, it holds

(Tz∗, T z2, T z3, T z4) = (Tz, Tz2, T z3, T z4).

By the Definition 1, Tz∗ must be the symmetric point of Tz. Therefore, we conclude that

Proposition 1. linear transformation maps symmetric pair to symmetric pair. More pre-
cisely if (z, z∗) is a symmetric pair with respect to the circle determined by z2, z3 and z4, then
(Tz, Tz∗) is a symmetric pair with respect to the circle determined by Tz2, T z3 and Tz4.

In fact, the concept of symmetric point is not new to us. In the following arguments, we
still use the notations in Definition 1. If we assume C is a straight line, then we know that
∞ must be on C. Therefore we can assume z3 =∞. by Definition 1, we know that

z∗ − z4
z2 − z4

=

(
z − z4
z2 − z4

)
. (0.3)

If z4 = 0 and z2 = 1, then C is just the x-axis. From (0.1), we see that z∗ = z. They are
symmetric with respect to the x-axis. For arbitrary z2 and z4, we can also show that z and
z∗ are symmetric with respect to the line given by z2 and z4. In fact if we take absolute
values on both sides of (0.1), we get |z − z4| = |z∗ − z4|. By Remark 1, z4 can be arbitrary
point on C, therefore z∗ can only be z or the symmetric point of z with respect to C. If
z = z∗, then by (0.1) we know that Im((z − z4)/(z2 − z4)) = 0. this shows that z is located
on the line C. In other words, if z is not on C, z∗ must be different from z. That is z∗ must
be the symmetric point of z with respect to C.

If C is a circle with center a and radius R, then we have

(z, z2, z3, z4) = (z − a, z2 − a, z3 − a, z4 − a) = (z̄ − ā, z̄2 − ā, z̄3 − ā, z̄4 − ā). (0.4)

Here the first equality comes from Proposition 0.9 in lecture note 7. Noticing that z2, z3 and
z4 are located on C, therefore, we have

|zj − a|2 = R2, j = 2, 3, 4.

Applying the above equalities to (0.4), we deduce that

(z, z2, z3, z4) = (z̄ − ā, R2

z2 − a
,
R2

z3 − a
,
R2

z4 − a
) = (

R2

z̄ − ā
, z2 − a, z3 − a, z4 − a)

= (
R2

z̄ − ā
+ a, z2, z3, z4).

The above arguments show that
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Proposition 2. If z∗ is the symmetric point of z with respect to the circle centering a and
having radius R, then

z∗ = a+
R2

z̄ − ā

finally, let us take a look at some examples.

Example 1: The symmetric point of a point on the circle C with respect to C is itself.

Example 2: If C is a circle centering at a, then the symmetric point of a with respect
to C is ∞.

Example 3: Given a circle C, the map from z to z∗ is called reflection. Reflect the imagi-
nary line with respect to the circle |z − 2| = 1.

Solution: Let w be a point on the reflection. then its symmetric point with respect to
|z − 2| = 1 must be on the imaginary line. By Proposition 2, we know that

2 +
1

w̄ − 2

must be pure imaginary. Assume w = w1 + iw2, it is clear from the above equality that

2(w1 − 2)2 + 2w2
2 + w1 − 2 = 0.

It is a circle centering at (7/4, 0) with radius 1/4.

Example 4: Given the unit circle |z| = 1 and a linear transformation Sz = z/(z + 2).
Find out the image of the unit circle under the given linear transformation.

Solution: Pick up one point on the unit circle, say 1. Its image under the action of the
linear transformation is 1/3. By Example 2, (0,∞) is a symmetric pair with respect to the
unit circle. Then by Proposition 1, (0, 1) is symmetric with respect to the image circle. By
Proposition 2, if a is the center of the imaging circle. R is its radius. Then we have

a1 − a21 +R2 = 0, a2 = 0. (0.5)

Here we assume a = a1 + ia2. Moreover 1/3 is on the image circle, therefore |a− 1/3|2 = R2.
Connecting this equation with the (0.5), we get a1 = −1/3 and R = 2/3.

Example 5: Find linear transformation which carries |z| = 2 to |z + 1| = 1, the point
−2 to the origin, the origin to i.

Solution: Since (0,∞) is a symmetric pair of |z| = 2, it holds that (i, T∞) is symmet-
ric pair of |z + 1| = 1. Here T is the linear transformation we are searching. By Proposition
2, we can easily show that T∞ = (−1 + i)/2. Since −2 7−→ 0, 0 7−→ i, ∞ 7−→ (−1 + i)/2,
T can be explicitly written out as follows: Tz = (z + 2)/((−1− i)z − 2i).
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